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Phase transitions induced by noise cross-correlations
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A general approach for treating the spatially extended stochastic systems with the nonlinear damping and
correlations between additive and multiplicative noises is developed. Within the modified cumulant expansion
method, we derive an effective Fokker-Planck equation with stationary solutions that describe the character of
the ordered state. We find that the fluctuation cross-correlations lead to a symmetry breaking of the distribution
function even in the case of zero-dimensional system. In a general case, continuous, discontinuous and reen-
trant noise induced phase transitions take place. It appears that the cross-correlations play the role of bias field
which can induce a chain of phase transitions of different nature. Within the mean field approach, we give an
intuitive explanation of the system behavior by an effective potential of the thermodynamic type. This potential
is written in the form of an expansion with coefficients defined by the temperature, intensity of spatial
coupling, autocorrelation and cross-correlation times and intensities of both additive and multiplicative noises.
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I. INTRODUCTION lection of works devoted to this phenomenon. Perhaps it can
) ) ) be explained by problems in both the natural and computer
The constructive role of the fluctuations of environment, ey periments realization for extended systems, on the one
usually calle_d noises, is of cpn5|derable interest in studyingyand, and by the lack of the theoretical tools and methods to
the stochastic processes. An incomplete list of such processggrform the corresponding calculations, on the other hand.
includes noise induced unimodal-bimodal transitibﬂssto— The above pointed phenomena force to reconsider the the-
chastic resonanc¢2], noise-induced spatial patterns and oretical approaches describing the noise induced phase tran-
phase transitiong3], etc. In a general case, considering thesitions in extended systems developed before. The works
stochastic dynamics, one should deal with a problem of takeoncerning such a problem consider specific models and
ing into account the correlations between random sourceshere is no general description of a transformation picture of
Several special methods have been developed in this direphase transition. Therefore, the problem of the fluctuation
tion. Most popular of them are as follow§) the cumulant which induces rearrangement of the system behavior is an
expansion method4,5]; (i) the spectral width expansion open question that should be clarified.
method[1,6]; (iii) the unified colored noise approximation  In this paper, we consider the general situation of present-
where evolution equations for both a stochastic variable an#'d the cross-correlation contribution of two noises within
a random force are combined within a unique equation ofh€ picture of phase transitions. We explore an extended sto-
motion [7-10]. chastic system which obeys the archetypal model of Brown-
The wide spectra of works are aimed to explore an effect? particle. The adequate scheme to specify the statistical
of correlations of the fluctuations in extended systdgee Properties of the system with nonlinear kinetic coefficient is
Ref. [3], and references therginlt appears that when the introduced in the overdamped limit. Within a simplest model

. ; . . . with nonlinear damping, drift caused by Landau-like poten-
system is nonlinear, the spatial coupling and noise Correlat'ial and two coloredpml?ltiplicative and a):jditiv)anoises l?Ne

tions force the system to exhibit a special behavior known 30w how the system can undergo noise induced phase tran-

rr:?a?lnlg?gtbzgﬁ/s:dt;?/gsnlt;g I%r}]e I,ivrlrﬂtr%?\csgasklljCzo?r(ra?;ggann;ge_sitions. We find that the phase transitions of both continuous
) : S y and discontinuous character are realized as biased phase tran-
if the noise self-correlation time is— 0, the system under-

oes a single reentrant phase transifib®]. In the opposite sitions. Analysis of phase and bifurcation diagrams shows
goe 9 P . ' e opp that the cross-correlations lead to metastable states inherent
limit of the strong correlated noise— ) a chain of reen-

- . in first order phase transitions.
trant ph_ase transitions can l_ae reali{6 . The paper is organized in the following manner. Section |l
A quite peculiar picture Is opserved in the case of thes devoted to the development of the analytical approach to
presence of several noises with cmss_-_correlaﬂons whic tudy noise induced phase transitions on the basis of kinetic
leads to the remarkable and counterintuitive phenomena r

%quation for the probability density function and cumulant
lated to a transformation of phase transition type. In such gpansion methog y y
case, the stochastic system undergoes a chain of phase tran- gec. Ill, we apply the derived formalism to the noise

sitions with the appearance of a metastable phase, Whereﬁﬁjuced phase transitions in the simplest case of the

thhe bar1e3 pode?tietll doteT not aszume thehexistence OI SUCIhG'j}nzburg-Landau model with both multiplicative and addi-
phase[13]. Unfortunately, nowadays we have a scanty co “tive noises and kinetic coefficient which depends on the sto-

chastic variable. On the basis of the obtained drift and diffu-
sion coefficients we build a multiplicative stochastic process.
*Electronic address: alex@ufn.ru The related probability distribution function combined with a
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self-consistency condition allow us to investigate the corre-

sponding phase diagram and stationary behavior of the order mX + ;X = f; 2d€22 DijXj + 9pilui (6)
parametefSec. IV). The discussion in Sec. V is based on the

representation of the effective stochastic process within thgye to representation of the Laplacian operator on a grid as
framework of the mean field approach. Such a consideratiog,jgws:

allows us to study the noise induced phase transitions by

analogy with the standard Landau scheme. It appears that the

noise cross-correlations and a spatially dependent damping A— EAi'

coefficient lead to the transformation of the continuous phase

transition into a discontinuous one. Finally, the main results

and perspectives of the work are collected in the conclusion A= 2 Dj = 2 (S, — 2d3;), (7)
(Sec. V).

whereNN(i) denotes a set of the nearest neighbors of the site
Il. MAIN RELATIONS i, whose number @is fixed by the lattice dimensiod.
By definition, the probability density function is given by
‘the averaging of the density functigitx;, p;,t) of the micro-
scopic states distribution in the phase space over noises:

Consider a Brownian particle under influence of an effec-
tive potential /{x(r)] and a damping characterized by the
viscosity coefficienty(x). The generalized equations for the
time evolution of thed-dimensional scalar fiel&k and the P(x:,pi,t) = (p(X, pi,1)). (8)

conjugate momenturp read . _ .
To construct an equation for the macroscopic density func-

mx=p, (1)  tion P=P(x;,p;,t) we exploit the conventional device to pro-
ceed from the continuity equation to the microscopic pne
X) OF =p(X;,pi,b):
p+ P +0,(X)8,(r 1) 2
X(r,t) 9 P, '
: : : - —( Xip) + (pip) =0. 9
wherem is the effective particle mass, an overdot stands for at X ap;

the derivative with respect to the tinter is the space coor-

dinate; the effective potential is reduced to the Ginzburg/NSerting the time derivative of the momentys mi from
Landau form[14] Eq. (6) into Eqg.(9), we obtain

ap ~ A
f:f {VO(X)+%|VX|2}dr (3 E:(£+Nu§u)p' (10

with Vy(x) andD >0 being a specific thermodynamic poten- where the operator§ and.V,, are defined as follows:
tial and an inhomogeneity consta¥it=d/dr. The last term

in Eq. (2), where indexu numerates different noises to be [=- pid _J _ E D x. — p- (11)
summarized in accordance with the Einstein rule, represents max;,  ap; fix 2d¢2< 717 )
Langevin forces which act with amplitudesg,(x) and sto-

chastically alternating functiong,. Neglecting a space cor-

_relations, we focus on time correlations between forggs ﬁ/ =-0, (;; (12
l.e., i
(ur 0, 1)y =8(r =r")C,(t—t). (4)  Within the interaction representation, the microstate density

function reads
Inserting Eq.(2) into the result of differentiation of Eq1)

over time, we represent the evolution equation for the quan- o= e—itp (13)
tity x in the form
to reduce Eq(10) to the form

ik 00K = 00 + 220X+ 0, (9, (5)

J
LR, (14
wheref(x)=-dV,/dx is a deterministic force. K

To study statistical properties of the system one needs to . . .
find the probability density functioP=P(p,x,t) of the sys- R,=R,(%.pit) = {,(eN, ). (15)
tem states distribution in the phase spg&ca}. To this end,
we represent the system on the regulatimensional lattice  The well-known cumulant expansion methiet] serves as a
with mesh size ¢ where y=¢(x), fi=f(x), 9, =9,(x). standard and effective device to solve such aAtype of stochas-
Then, the differential equation with partial derivativés is  tic equation. Neglecting terms of the orc@(Ri), we get
reduced to the usual differential equation the kinetic equation in the form
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t
%(M(t):[zf <Rﬂ(t)7€y(t')>dt'}<m(t)- (16)
uv Y0

Within the original representation, the equation for the prob-

ability density(8) reads

t - N
%P(t) = {2 + f cw(T)[NM(eﬁWVe-ﬁf)]dT} P(t).
0
(17)

If the physical time is much larger than a correlation scale
(t>r,), we can replace the upper limit of the integration by
t=o, Then, expanding exponents, we obtain for the pertur

bation expansion

P~ A
E—(,C+C)P, (18)

where collision operator
c=Xc", cm=MDN,LY) (19)
n=0
is determined through the commutators

LMY =12,2M, £9=4, (20)

and moments of the correlation function

1 o0
M;p;: o f 7'C,,(7)dT. (21
*J0

To perform the following calculations we shall restrict
ourselves to considering overdamped systems where the

variation scales, €, X, vs, 7s, fs, D, @andgg of the timet,

the coordinater, the quantityx, the velocityv=p/m, the
damping coefficienty(x), the forcef(x), the coupling con-
stantD, and the noise amplitudeg,(x), respectively, obey

the following conditions:

Uds s g Xl 2y

Xg m
&:gitsze_l>l, DLStSZE_1>1. (22)
vm  vMm Mot
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I _ - D<o
—=—€2ypi+€ 1lfi + 52 DijX; + 9,0 |-
j

at
(24
Respectively, the Fokker-Planck equatid®) reads
J - o
—-L|P=€“P, (25)
at
where the operator
2 = _121 + 6_222 (26)
has the components
~ J D ~ d
Li=—-pi——|f+— DX |—,
N d
Lo=vvi. (27
v

The collision operator is defined by expressions such as Eqgs.

(19—21):

=", CV=MDW,LY),
n=0
PO=e2R, A =-gu 28
v — € v n g,ui v, . ( )
After suppressing the facta?, the collision operator writ-

ten with accuracy up to the first order &< 1 takes on the
explicit form

. &+
Cc= (Mf,), - %Mﬁ)gmgviﬁ + EMlegmgyi
I

{ & 1 (agyi)< d (92)}
X| —-—| 2| —+vi—5
X dvi G\ 9% /\dv;

+0(). (29

To obtain the usual probability functioR(x;,t) we con-
sider velocity moments of the initial distribution function
P(x,v;,t) in the standard fornp6]

Pn(xi,t) = J UinP(Xi,Ui,t)dUi, (30)

where integration over all sgv;} is performed. Then, mul-

These conditions means a hierarchy of the damping and thg,|ying the Fokker-Planck equatia@5) by the factor" and
deterministic/stochastic forces are characterized by relationgegrating over velocities, one obtains the following recur-

rent relations:

L8y D

YsVs  YUs YsUs

As a result, the dimensionless system of equati@hand
(2) takes on the discretized form

=e<1. (23) P

D -
% n(fi + 5; Dinj)Pn_1:|

=n(n- 1)(Mi?3 - ViM(l))gmgyiPn—z - EnMile

.

IX; _ 57)n—1 &gv
&_tl = e, X [g’”g”a—xi + ng,u( ﬁXiI)Pn—l] +0(é%). (31

JP,
ezﬂ_tn +ny P, + E|:
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At n=0, we obtain the equation for the distribution func-
tion P="Py(x;,1):
P

IP__ A
ot

% (32

The expression for the first momeRt follows from Eq.(31)
wheren=1 and only terms of the first order inare kept:
€

2d4
aP
X guigvig + g,ui
1

The second momeri®, can be obtained if one puts=2 in

P]_:

(33)

PHYSICAL REVIEW E 71, 041101(2005

_ Dy(x',m) 7])
P e pU DX ) 0
where the partition function
x Dl(x 7})
i _wz p(f DiX) ) v

takes care of the normalization condition. Equat{88) has
solutions within the domain bounded by the Newton-
Raphson condition

“ 9
f 3 XEI’P,?(X)

obtained by differentiating E439) over the order parameter

dx
7=0

1 (42)

Eq. (31 and takes into account only terms of zeroth order?”-

over the parameter<<1:

(0)
My _ M(l

M
P
Yi

Inserting Eq.(34) into Eq. (33) and the result into Eq(32)

)g,ugw (34)

Ill. MODEL OF CORRELATION BETWEEN ADDITIVE
AND MULTIPLICATIVE NOISES

To apply the general results obtained in Sec. Il we con-
sider in detail the simplest model of correlated additive and

we obtain the Fokker-Planck equation in the Kramers-Moyamultiplicative noises with amplitudes

form

JP

ot

&
:__( 1P) + 2

7% i —(D;P),

(35)

where effective drift and diffusion coefficients are as fol-

lows:
073/-_1
(0 Zh
) + |:M;wg,uigvi a%;

99,
' Miflgm(%xi')”. (36)
M(O)
D,=—4¢ (37)

To proceed, one needs to pass from the grid representation
to a continuous one. Doing so, we use the mean-field a
proximation to replace the second term of effective interac;
tion force in Eq.(36):

> |5in1' = ( > XNNG) ~ 2dxi> —2d(n-x), (39
i NNG)

where NN(i) are nearest neighbors of the sitean order
parameternp=(x) is defined through the self-consistency
equation

r;=fe XP ,(x)dx, (39

andP,(x) is a solution of the Fokker-Planck equati(3b).
Under stationary condition, the relevant distribution function
has the form

0¥ =1, gn(X) =sgrx)|x?, (43

where the exponent ia [0, 1] and the sign function is in-
troduced to take into account the direction of the Langevin
force. We will focus on the prototype system concerning the
Ginzburg-Landau model with the potential

€ 1
Vo(X) = = =x2+ =x4, 44
o(X) X *y (44)
whereeg is a parameter corresponding to dimensionless tem-
perature counted off a critical value in negative direction. In
correspondence with the line of considerat{d’]|, we take

up the viscosity coefficient in the form

y(x) = [x? - 179, (45)

where the positive indexx stands to measure the damping
smgulanty near the bare staxe 1.
Next, we suppose the noises to be Gaussian distributed

Rith zero mean, white in space and colored in time according

to the correlation matrix

0_2

a-frir,  Tadmdin
~ Ta Tc
C(n) = 2 : (46)
ImTa iz, I |l
Tc Tm

where o, and g, are amplitudes of additive and multiplica-
tive noises, respectively;, and 7, are corresponding auto-
correlation times,r; is a time of the cross-correlation be-
tween noises. Moment21) of both zero and first orders of
correlation matrix(46) are as follows:

7

0a0m

2
Um
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(47)

2
T(Omoa) TmOm

Then, the expression86) and (37) for effective drift and
diffusion coefficients take the form

'\7' (1) - ( Taﬂ'i Tc(o'ao'm) )

Dy =X = Y{[D(7=x) +X(e = x*)] + aoy|x*™*

X [UaTc + O'meSgr(X)|X|a]}
+ 2aX(X2 - 1)2a_1[0'a + U'mSgI’(X)|X|a]2, (48)

D,y= (X2 - 1)2a[0'a + UmSQr(X)|X|a]2- (49)

It is worthwhile to notice aty(x)=consta=0) the additive
noise can not give a contribution to the drift coefficié48)
related to the first of momentg7).

IV. NOISE CORRELATION INDUCED TRANSITIONS FIG. 1. Dependence of the order parameteon the control
. . _ . parameter ¢ at a=0.8,a=0, 0>=4.84,0%=0.01,7,=0.01,D

We start the consideration of the influence of noise cross=1.0. curves 1, 2, 3, 4, 5 correspond 400, 7.=2.5, 3.0, 5.0,
correlations on the system behavior from the self-consistencyo.o, respectively. The dashed curve relates to the bare dependence
equation(39) where the stationary distributio@0) is given 7=+, dotted curves correspond to the unstable solutions.
through the drift and diffusion coefficien(48) and(49). It is
well known in the theory of phase transitions that the sym-has reentrant nature within domain bounded by both lawyer
metry breaking causes the ordered state corresponding to tl@d uppers® boundariegsee elliptic form parts of curves 2,
solution »# 0, while the disordered phase is relatedso0 3 where solid and dotted lines relate(tnetgstable[17] and
=0. In the absence of the multiplicative noise, the symmetryunstable solutior)s With subsequent growth of the cross-
of the stochastic distribution can be broken only by the in-correlation time above the valug, (thin solid curve in Fig.
teraction force(38) which plays the role of a conjugate field 1) back bifurcation occurs and temperature dependence of
related to the order parameter The principal feature of the order parameter takes one-connected character. This
far-off-equilibrium systems with colored noise is that the means that the increase of the control parametirads to
symmetry can be restored due to the combined effect of botthe (metastable branch of positive magnitudes initially
the multiplicative noise and the system nonlineafidyl2)]. (solid curve, then the unstable bran¢totted curvefollows
Therefore, a reentrant phase transition in such systems také®m the point ¢ down to g, and finally the negative
place. We aim to demonstrate that the picture of the phas@netgstable state is merged. A further increaserimesults
transition can be crucially changed by means of noise crossa the formation of a hysteresis loop in thge) dependence
correlations. where both(metgstable and unstable states appear to be so-

First, we consider the solution of Eq39) at different Iutions of Eq.(39) (see curves 4,)5Thus, one can conclude
values of the noise cross-correlation scaleAs it is shown  that the reorientation phase transitions exist in systems with
in Fig. 1, in the absence of both noisés,=0,,=0) and cross-correlated fluctuations.
coupling(D =0) the system behaves in an usual manner, as in In Fig. 2, we plot a phase diagram (a, 7.) plane to show
a square-root lawdashed curve with both vertical derivative the influence of the noise cross-correlation scale on the bi-
in the point of origin and symmetry with respect to the furcation magnitudes of the control parameter. One can see
axig). Such a behavior means the appearance of the maxinthat negative values of the order paramegezxist for small
of the distribution(40) at the points ¥ which can be inter- cross-correlation times in the wholee domain, denoted as
preted as standard noise induced second order transition witk in Fig. 2. An increase i, leads to the reorientation phase
mean valuey=0 [16]. The situation is changed principally if transition where the positive solutiong>0 appears in the
we switch on the noises and coupling. First, the above symdomainP. The line of such a transition is determined by the
metry is broken and only the negative value of the orderself-consistency equatiof89) at condition=0. At a mag-
parameter in the limit of small cross-correlations survivesnitude 7,, a doubly bounded domaiR appears where a re-
(curve 1. Combined effect of correlated noises, system nonentrant transition is realized. At the critical valag corre-
linearity and spatial coupling leads to the change of the ordesponding to the bifurcation curve in Fig. 1 the dom&n
parameter sign at small valuesIndeed, as can be seen from passes to a regioM where all stable, metastable and un-
the curves 2, 3, an increase in the cross-correlation time stable phases take place. Over the critical correlation time
shifts negative solution weakly into the positive domain(7.> 7,), the dotted curve relates to the lower critical value
causing the reorientation transition at the driving parameteg; of the control parameter in Fig. turve 4.
er. In addition to this transition, an increase in the cross- The influence of the multiplicative noise intensitf, on
correlation scale leads to the appearance of the positive sthe phase transition picture is demonstrated in Fig. 3. The
lutions according to discontinuous phase transitions whictlupper panel relates to the moderate cross-correlation tines
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. 7, a

cr 2 4 1

3-
1 2
T, 1
0_
2_
14
14 -2 -
3 4
o ! ! ' 1 T 4 T
0 4 8 12 € 0 3 6 9 12 £

FIG. 2. Phase diagram in tHe,r.) plane ata=0.8, =0, o,fl
=4.84,02=0.01,7,=0.01,D=1.0. Domains denoted &, N, R,
andM correspond to positive and negatiyevalues, reentrant tran-
sition, and(metgstable phases, respectively.

where an increase in?, transforms the two-connectels)
dependence into a one-connected one varying faster. With
growth of the time scale;, an increase in the multiplicative
noise intensity leads to the shrinking of the metastability
domain(see lower panel in Fig.)3Thus, we can see the dual
role of the multiplicative noise: at small intensitieg <1,

the main influence is rendered by the cross-correlations be- | |
tween additive and multiplicative components of the noise to
sharpen the phase transitiee Fig. ; on the other hand, a

raising of the intensity of the latter component upoth~ 1 N
smears this transition. 3]
According to Fig. 4 only one difference between the
phase diagram in the axés, D) and the situation depicted in 4] |
3

Fig. 2 takes place. Here, at small magnitudes of the control i
parameter, the domainP of the positive valued order pa- o ' ' '
; . 3 6 9 12 15 18 €&

rameter >0 relates to the whole region of the coupling
parameteD. FIG. 3. The order parametey vs the control parameter at a

To find relations between noise exponenand the con- =0.8,4=0.0,D0=1.0,02=4.84,7,=0.01 and cross-correlation
trol parameters we consider the phase diagram (s,a) times 7,=2.5 (a) and 7,=5.0 (b). Curves 1, 2 relates to the multi-
plane. It appears that for noises with weak cross-correlatioplicative noise intensities=0.01 ando%=0.25. Points fromx to
(7.—0) the new phase arises only at small enough values of address to corresponding curves in Fig. 10.
a which define the power of the multiplicative noigsee
dashed curve in Fig.)5In other words, considering the class long range cross-correlations. At small and moderate values
of systems with both additive and multiplicative noises, oneof the noise exponer# the system behavior is described by
should take into account that the ordering processes are poie hysteresis loop formation.
sible in the case of weak cross-correlation only if the multi-  The influence of the damping exponeat#0 on the
plicative noise has a weak power. For the systems with breaking symmetry picture is shown in Fig. 6. It appears that
— 1 the weak cross-correlation cannot induce new phase fon increase i transforms they(e) dependence in a manner
mation. According to the solid-dotted curves in Fig. 5, ansimilar to the influence of the cross-correlation time In-
increase inr, leads to appearance of small valued domain ofdeed, the passage from the two-connecjésd) dependence
e where the reorientation transition takes place with related to curves 1 to one-connected curves 2, 3 can be pro-
growth. In addition, domains of both positive and negativevided with an increase of both anda—quite similar to the
order parameters, being reoriented, join with the metastableg(e) dependencies variation shown in Fig. 1. The conclusion
phase region at small values of the indexHowever, an about similarity of the influences of the damping exponent
increase ina leads to the reentrant phase transition for theaw# 0 and the cross-correlation time is confirmed by the

i
I
I
t
!
T
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D
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3 5 10 20 £ -4 ' : ‘
0 10 20 30 £
FIG. 4. Phase diagram iffe,D) plane ata=0.8,a=0,trf1
FIG. 6. The order parameter, vs the control parameter

=4.84,0%=0.01,7,=0.01,7,=2.5.

phase diagram in plang, «) which is topologically similar
to the same in Fig. 2 at large correlation tiniese Fig. 7a)].

e at 7,=0.01,02=4.84,02=0.01,D=1.0,a=0.8: curve 1—e
=0.2,7.=2.5; curve 2—a=0.2, 7.=5.0; curve 3—=0.7, 7.=5.0.

According to Fig. Tb) decreasing the cross-correlation time times as maximunat e=6.5 and7.=2.85 for example, see

leads to the reentrant phase transitiithin the domainR)

Fig. 8@)]. The physical situation becomes more simple with

due to the appearance of the additional regibnelated to  an increasing ot [Fig. 8b)].

the negative values of the order parameter.
Finally, we set up the properties of the Langevin sources
which induce ordering processes in the system. To this end,

we plot the corresponding phase diagraniina) plane(see Toun

V. DISCUSSION

derstand the main features of the system under con-

Fig. 8. Here, the system undergoes the reorientation transgideration we proceed from the equation of effective motion

tion related to the transformation of the negative valued or-

der parameter into the positive onesf increases. On the

other hand, increasing the exponaraf multiplicative noise  related t
at smalle, we can make the system undergo a chain of phasg(t) with

X =Dy(X) + VDo) (1) (50)

o the Fokker-Planck equati@b) where white noise
properties &(t))=0, (&(t)£(0))=4(t) is used. Within

transitions at which the parametgrchanges the sign three the mean-field approach, E€0) takes on the form

;
N
R N
a ~
N / ~_
S
0.1 L
P i
]
i
i
]
i M
0.01 -
N
whose
0.001 . , :
5 10 15 20 &

FIG. 5. Phase diagram ife,a) plane ata=0,o§=4.84,02m
=0.01,7,,=0.01,7,=2.5,D=1.0. Dashed curve relates to the limit related

7.—0.
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'n:<z>1<x)>z—j—F, F=oF(p-hy. (50
n

Using the definition(48) for the simplest set of indexes
=0, a=1 a thermodynamic-type potentidF(») and a field
h are defined through the following expressions:

c+e 1
SF () =- 2’“772+Zn“, Em=Tmoh (52

h= 7.0,00. (53

Comparing the first of definition&?2) with the bare potential
(44), one can see that the multiplicative noise leads to an
increase in the control parameterdue to the additiore,

magnitude is proportional to the noise intensiﬁy

with the coefficientr,, being self-correlation time. As a re-
sult, a growth of the multiplicative noise intensity shown in
Fig. 3 causes an increase in the order paramgtat small
magnitudes of the control parameter A smearing of the

dependenciege) at moderate valuesis induced by

the effective fieldh inherent in the cross-correlation effect
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~0.01.D=1.0 1—0d8'?a) ?jg)op(b) i _27"% 0.01,05=4.84, 07, £=6.5(a) ande=15 (b); other parameters are=0, 7-m=0.01,o*621
=0.01,D=1.0,a=0.8: -=5.0; -=2.5.

=4.84,0%=0.01,D=1.0.

fixed by the characteristic time, and intensitieso?, o2,
According to Eq(51) the fieldh leads to deepening the right
minimum of the thermodynamic potenti®(7). If cross-
correlation effects are so slight that the condition

(e +ey)%? 2 F = 6F(n) —hsgn(n)| 7, (55)

<C————, C = (0.385 54
T 00 3812 (54)

only the upper boundary® (curves 4, 5 in Fig. 1
With passage to the general case 1, the thermody-
namic potential in Eqs(51) and(52) takes on the form

— € €m 2a 1 4

is applied, the fielch is less than a critical valu,=C(s OF == <§772+ ?772 ) a7 (56)
+g,)%? and the right minimum of the thermodynamic poten-

tial F(n) has a local character. It means that the positivethat differs from the initial one by replacemeny
order parameter appears within a two-bounded integyal — sgr(m)|7|%. At a<1, this replacement leads to the more
<e<ef(see curves 2, 3 in Fig)1With strengthening cross- intense variations of the thermodynamic potenti&]»)
correlations, when the conditidm< h. ceases to be valid, a within the actual domaim<1 where the local minima can
barrier between right and left minima disappears and a doappear. As a result, a decrease in the indaderives to the
main of the positive order parameter becomes bounded byetastable phase — in perfect accordance with Fig. 5.

041101-8
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n

FIG. 9. The form of the thermodynamic potentials given by Egs.
(57)—<61) within the Ito (curve 1 and Stratonovich(curve 2
interpretations.

To ascertain the effect of the indexwe consider mean
field approach in the extreme cage 1, a=1. Here, the ther-
modynamic potential in the equation of moti1) takes the
form

F=F ¥ hp+ oF(z), (57)
where
0, atp=<-1,
F={(s+e,)/2-4n/3-1/6, atpe (-1:1], (59
- 8h/3, atnp>1,

the fieldh is determined by Eq53) and the additiorsF(7)
is defined by the expansion

A B E
5FE_7]2+_7]3+97]4+_7]5+97]6

59
2 3 4 5 6 9
with the following coefficients:
A= T (e+egy+ 20'2, B=(4£71)0.0m,
C=+[1 +(8+8m)]+2(0'r2n—0'§),
=-40,0m G= F1-202; (60)

the upper sign in Eq957) and (60) relates to the domain
ne (-1;1] and lower sign is taken out of this domain. Com-
paring these equations with the potent@®) corresponding
to the indexa=0 we find that a spatially dependent damping
coefficient (45) leads to the transformation of the second

PHYSICAL REVIEW E 71, 041101(2005

transition. To pass from the Ito calculus used above to the
Stratonovich one, we have to add the teii’mé(x) to the drift
coefficientD,(x) in Eq. (51) [4]. Then, the thermodynamic
potential F=-D;(7)d7 has an additional 3D,(7) which
transforms the potential given by Ed58.7)—(60) to the form

F=F-hn+oF(n), (61)
- 022 atyp<-1
~ a’ 1 ’
F={(e+em—02)/2-4h13-1/6, atye (-1;1],
- 8h/3 - %2, atyp>1,
h= (1 £ 7)00m,
A, B, C, E,. G
SF==—p+=—pP+—pt+=p°+—1°
2772 PR
A= Fe+[doi- (L try)al],
B= (10 7)030m,
C= +(1+¢)-[402- (6 £ )02,
E=-900, G= ¥1-502, (62)

where we take into account E@9) ata=1, a=1. Compatri-
son of the dependenci€57) and(61) given in Fig. 9 shows
that the Stratonovich addition promotes to strengthening of
the first order transition.

We proceed with the consideration of the form of the
probability distribution function(40) that is responsible for
the reorientation transition related to curve 1 in Fig)3As
can be seen comparing the curvesind e depicted in Fig.
10(a), the positive magnitudes of the order paramejer0
is related to the distribution whose right maximum has a
larger height and is wider than the left of@nd vice versa at
7<0). A much more complicated picture takes place with
growth of the correlation time, when strongly pronounced
maximum of the distribution(40) is transformed from the
left into the right one by means of passage via the bimodal
dependencgsee curves, y, andéd in Fig. 10b)].

The situation considered above corresponds to a constant
damping coefficient(45 when the distribution(40) has
smooth form due to the index=0. In the general case
#0, the distributionP,(x) exhibits a pair of strong maxima
at symmetrical pointx=x1 (see Fig. 11 The analytical
form of these maxima follows from the estimations

D1(X) = 2a( 0, + o) X(X2 = 1)2¢7L,

order phase transition into the first order one, as it follows

from Figs. 6 and 7.
The form of the thermodynamic potentialgiven by Egs.
(57)—(60) is shown in Fig. 9 as a function of the order pa-

Dy(x) = (04 % a)?X* - 12 (63

that are given by the dependencig8) and (49) near the

rameters. It can be seen that such a dependence has thrgwintsx=*1. As a result, we arrive to the integrable singu-
well pronounced minima inherent in the first order phasdarities

041101-9
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0.8 - finite value of the probability distribution function.
Traditionally, one presents the distribution functi¢tO)
in the Boltzmann-Gibbs exponential form
0.6 Vep(X
P(x) = exp{— —EFE )} (67)
Ua
o0 4 where an effective potential
Dy(x)
A dx+ o2InDy(x 68
EF af Dz(x) 0y 2( ) ( )
0.2 -
is introduced which is governed by the probability distribu-
tion in the usual manndrl]. Usage of the definition$48)
0.0 and (49) in the simplest case=1, «=0 leads to explicit
RS form of the potential68):

FIG. 10. Probability distributions addressed to the different Ver =~ Hx+V(X), H =D+ (7o~ 2)030m,

points of the dependenege) related to curve 1 in Fig.(8): curves

a, € in panel (a) correspond to the values=3, =0.56 ande v éx2+ §x3+ 9)(4
=18, n=-4.18, respectively; in panéb) the control parameter is 2 3 4"
equale=12 and curveg, vy, § correspond to different magnitudes

of the order parametey=3.15, »=1.14, and»p=-3.32.

) A=(D-¢)-(2+7)0%+ 220Dy + 7.0,00),
(&P

P._(X) = 7 64
o) (0a% o)?x% = 1] 649 oo . o)\2
which have the form of the maxima shown in Fig. 11. In b= 2;[(8_ D)+ (1 + 7in) 7] _3<;a) (D7 + 7720w,

contrary, near the point=0 one has the estimations

2
Dy(X) = a0,0mmX* ™ Da(X) = o5 (65) C=1- (Z—”‘) [3(e = D) + (2 + 3r) 0]
which lead to the expression : 3
g,
z1 z1 +4(—m) (Dy+ 17.0.0m), (69)
Px) = —’;exp(ﬁ’rclxﬁ) - (66) 7a o
7 a5 o, s

a a

where we kept only the terms up to the fourth order in the
Thus, the singularities of the drift coefficie®;(x) at the  stochastic variable. The form of the dependend&8) is
point of origin has an integrable character that results in thelepicted in Fig. 12 for different sets of the indexeand a.

041101-10
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Vef eters(dimensionless temperatuseand intensity of the spa-
tial couplingD).

0] ; The picture studied above allows us to generalize the
theory of phase transitions for systems with a set of stochas-
tic forces of different nature. Based on the mean-field ap-
proach, we show that the system can be described through a

10 - thermodynamic potentiaF(7) whose construction differs

2 principally from the bare potentidly(x): so, if the latter has
the simplestx* form, the former is shown to be of thg®
form. Coefficients of related expansion are obtained to define
terms of the even powers through the dimensionless tem-
-20 1 peraturee, intensity of spatial couplind, autocorrelation
time 7, and intensities of both additiv&§1 and multiplicative
o’% noises; terms of the odd powers are defined through the
characteristics,, o, ando,, of the noise cross-correlations,
respectively. Thus, we can conclude that the phase transition
tends to transform its character from a continuous to a dis-
continuous one due to the noise cross-correlation strengthen-
ing. This trend is displayed more strongly with the growth of
FIG. 12. The form of the effective potentié8): curves 1 and 2  the indexa whose value determines tlxadependence of the
correspond to the cases=1, «=0(¢=10,7=-2.8) anda=1,«  damping coefficient/(x). On the other hand, transition from
=1 (e=10,7=-4.88, respectively. the Ito calculus to the Stratonovich one promotes strengthen-
ing of the discontinuous transition.
Comparing respective curves, we conclude that the growth of Obtained results can be applied to complex systems which
the indexa promotes a strengthening of the strong minima atare far-off-equilibrium and hold several collective degrees of
points »=+1 of the Vgg(x). freedom. As it is shown in the consideration of a three-
dimensional Lorentz-like system with noises being initially
additive in nature, a usage of the saving principle reduces
two of these noises to multiplicative ongk8]. The physical

In this paper we have considered the effect of the orderingeason of such a picture is hierarchical subordination of dif-
of stochastic system with two correlated noises. Doing soferent degrees of freedom. According to our previous consid-
we have used the model of a system with Landau-like poter€rations{19,20 a typical example of such a type takes place
tial V,(x), subject to both additive and multiplicative noises in solid state physics where a reentrant metastable phase can
with amplitude of the latter in the form of the power-law @ppear if the matrix phase relates to random ensemble of
function [x[2, a<[0,1] and affected by-dependent damp- defects of different dimensions subject to the field of plastic
ing with coefficient y(x)=[x2-1]"¢, a<[0,1]. Within the flow (driven-dislocation-vacancy-ensempleHere, in the
framework of both the cumulant expansion method andcourse of plastic flow different defect structures alternate ac-

mean-field theory, the stationary picture of the ordered state&°"ding to the picture of a first-order phase transition. More-
is investigated in detail. We have shown that the fluctuatiorPVe": the structural reorientation transitions take place where
cross-correlations can lead to the symmetry breaking of thi€ Sign of the order parameter is related to the resulting
distribution function even in the case of the zero-dimensionafféction of the Burgers vectors of dislocation cluster. One
system. When introducing the spatial coupling, noise crossT'0re €xample of the above studied behavior is given by the
correlations can induce phase transitions where the order p5£€ntrant glass transition in colloid-polymer mixtu@d.

rametery=(x) varies discontinuously or in a reentrant man- _"inally we note that all the presented results have been

ner. We have studied the specific intervals of the magnitud erived for a system with a nonconserved order parameter.

of system parameters where the ordered phase can b@e perspective of further exploration is to investigate the

formed. To this end, the principal phase diagrams are Ob§ystem with a conserved order parameter.

tained to illustrate the role of the multiplicative noise expo-
nenta, spectral characteristics of fluctuatiofesutocorrela-
tion time 7, and cross-correlation time,), amplitudes of We are indebted to Dr. V. Blavatska for attentive reading
both additives, and multiplicatives,,, noises, exponertt of  and correction of the manuscript. A.1.O. gratefully acknowl-
the kinetic coefficienty(x), as well as deterministic param- edges STCU, Project No. 1976, for financial support.

-30

T T T T T

-10 -5 0 5 10 15 X

VI. CONCLUSIONS

ACKNOWLEDGMENTS

041101-11



OLEMSKOI, KHARCHENKO, AND KNYAZ’ PHYSICAL REVIEW E 71, 041101(2005

[1] W. Horsthemke and R. LefeveNoise-Induced Transitions [12] C. Van der Broeck, J. M. R. Parrondo, R. Toral, and R. Kawai,
(Springer-Verlag, Berlin, 1984 Phys. Rev. E55, 4084(1997).
[2] K. Wiesenfeld and F. Moss, Natuteondon 373 33(1995.  [13] D. Kharchenko and I. Knyaz’, Eur. Phys. J.®, 375(2003.

[3]J. Garcia-Ojalvo and J. M. Sanchbloise in Spatially EX-  [14] M. Ibanes, J. Garcia-Ojavo, R. Toral, and J. M. Sancho, cond-
tended System$pringer-Verlag, New York, 1999 mat/9905411.

[4] N. G. Van Kampen,Stochastic Processes in Physics and [15] C. L. Emmott and A. J. Bray, Phys. Rev. B9, 213(1999.

Chemistry(North-Holland, Amsterdam, 1992 [16] A. I. Olemskoi, Phys. Usp168 287 (1998.

[5] V. E. Shapiro, Phys. Rev. B8, 109(1993. )
[6] H. Risken,The Fokker-Planck EquatiofSpringer-Verlag, Ber- [17] We use the ternimetgstable to notice both stable and meta-

lin, 1989. stable states, whose distinguishing is achived by comparing
[7] F. Castro, H. S. Wio, and G. Abramson, Phys. Re\6E 159 related thermodynamic potentidisee Sec. ¥

(1995. [18] A. I. Olemskoai, Theory of Structure Transformations in Non-
[8] S. E. Mangioni, R. R. Deza, R. Toral, and H. S. Wio, Phys. equilibrium Condensed MattefNOVA Science, New York,

Rev. E 61, 223(2000. 1999.
[9] D. O. Kharchenko and S. V. Kohan, Eur. Phys. J.2B, 97  [19] A. I. Olemskoi A. Ya. Flat, Phys. Usp36, 1087 (1993

(2002. [20] A. I. Olemskoi and A. A. KatsnelsonSynergetics of Con-
[10] D. O. Kharchenko, Physica 808 113(2002. densed MattefURSS, Moscow, 2003
[11] C. Van der Broeck, Phys. Rev. Leff3, 3395(1994). [21] T. Eckert and E. Bartsch, Phys. Rev. Le#9, 125701(2002.

041101-12



